Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 55(20): 2900-2903, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698594

RESUMO

Hybrid nanocomposites are multiphase systems with a wide range of applications. Some nanocomposites are water insoluble thereby preventing several applications. Thus, we prepared telechelic PEO with glucose molecules to form water-soluble lamellar nanostructures by co-assembly with metallacarborane. The lamellas formed by PEO/metallacarborane decorated by glucose molecules on the surface can serve as delivery agents for boron clusters and benzoxaboroles.

2.
Chem Asian J ; 13(7): 838-845, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29384259

RESUMO

Thermoresponsive nanoparticles based on the interaction of metallacarboranes, bulky chaotropic and surface-active anions, and poly(2-alkyl-2-oxazoline) block copolymers were prepared. Recently, the great potential of metallacarboranes have been recognized in biomedicine and many delivery nanosystems have been proposed. However, none of them are thermoresponsive. Therefore, a thermoresponsive block copolymer, poly(2-methyl-2-oxazoline)-block-poly(2-n-propyl-2-oxazoline) (PMeOx-PPrOx), was synthesized to encapsulate metallacarboranes. Light scattering, NMR spectroscopy, isothermal titration calorimetry, and cryogenic TEM were used to characterize all solutions of the formed nanoparticles. The cloud-point temperature (TCP ) of the block copolymer was observed at 30 °C and polymeric micelles formed above this temperature. Cobalt bis(dicarbollide) anion (COSAN) interacts with both polymeric segments. Depending on the COSAN concentration, this affinity influenced the phase transition of the thermoresponsive PPrOx block. The TCP shifted to lower values at a lower COSAN content. At higher COSAN concentrations, the hybrid nanoparticles are fragmented into relatively small pieces. This system is also thermoresponsive, whereby an increase in temperature leads to higher polymer mobility and COSAN release.

3.
Langmuir ; 34(12): 3541-3554, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29144761

RESUMO

Anionic boron cluster compounds (ABCCs) are intrinsically amphiphilic building blocks suitable for nanochemistry. ABCCs are involved in atypical weak interactions, notably dihydrogen bonding, due to their peculiar polyhedral structure, consisting of negatively charged B-H units. The most striking feature of ABCCs that differentiates them from typical surfactants is the lack of head-and-tail structure. Furthermore, their structure can be described as intrinsically amphiphilic or aquaneutral. Therefore, classical terms established to describe self-assembly of classical amphiphiles are insufficient and need to be reconsidered. The opinions and theories focused on the solution behavior of ABCCs are briefly discussed. Moreover, a comparison between ABCCs with other amphiphilic systems is made focusing on the explanation of enthalpy-driven micellization or relations between hydrophobic and chaotropic effects. Despite the unusual structure, ABCCs still show self- and coassembly properties comparable to classical amphiphiles such as ionic surfactants. They self-assemble into micelles in water according to the closed association model. The most typical features of ABCCs solution behavior is demonstrated on calorimetry, NMR spectroscopy, and tensiometry experiments. Altogether, the unique features of ABCCs makes them a valuable inclusion into the nanochemisty toolbox to develop novel nanostructures both alone and with other molecules.

4.
Langmuir ; 32(26): 6713-22, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27287067

RESUMO

This is the first experimental evidence that both self-assembly and surface activity are common features of all water-soluble boron cluster compounds. The solution behavior of anionic polyhedral boranes (sodium decaborate, sodium dodecaborate, and sodium mercaptododecaborate), carboranes (potassium 1-carba-dodecaborate), and metallacarboranes {sodium [cobalt bis(1,2-dicarbollide)]} was extensively studied, and it is evident that all the anionic boron clusters form multimolecular aggregates in water. However, the mechanism of aggregation is dependent on size and polarity. The series of studied clusters spans from a small hydrophilic decaborate-resembling hydrotrope to a bulky hydrophobic cobalt bis(dicarbollide) behaving like a classical surfactant. Despite their pristine structure resembling Platonic solids, the nature of anionic boron cluster compounds is inherently amphiphilic-they are stealth amphiphiles.

5.
Angew Chem Int Ed Engl ; 54(47): 14113-7, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26425966

RESUMO

The self-assembly of metallacarboranes, a peculiar family of compounds exhibiting surface activity and resembling molecular-scale Pickering stabilizers, has been investigated by comparison to the micellization of sodium dodecylsulfate (SDS). These studies have shown that molecules without classical amphiphilic topology but with an inherent amphiphilic nature can behave similarly to classical surfactants. As shown by NMR techniques, the self-assembly of both metallacarboranes and SDS obey a closed association model. However, the aggregation of metallacarboranes is found to be enthalpy-driven, which is very unusual for classical surfactants. Possible explanations of this fact are outlined.

6.
Chemistry ; 20(22): 6786-94, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24737689

RESUMO

The anion [3,3'-Co(C2B9H11)2](-) ([COSAN](-)) produces aggregates in water. These aggregates are interpreted to be the result of C-H⋅⋅⋅H-B interactions. It is possible to generate aggregates even after the incorporation of additional functional groups into the [COSAN](-) units. The approach is to join two [COSAN](-) anions by a linker that can adapt itself to act as a crown ether. The linker has been chosen to have six oxygen atoms, which is the ideal number for K(+) selectivity in crown ethers. The linker binds the alkaline metal ions with different affinities; thus showing a distinct degree of selectivity. The highest affinity is shown towards K(+) from a mixture containing Li(+), Na(+), K(+), Rb(+) and Cs(+); this can be indicative of pseudo-crown ether performance of the dumbbell. One interesting possibility is that the [COSAN](-) anions at the two ends of the linker can act as a hook-and-loop fastener to close the ring. This facet is intriguing and deserves further consideration for possible applications. The distinct affinity towards alkaline metal ions is corroborated by solubility studies and isothermal calorimetry thermograms. Furthermore, cryoTEM micrographs, along with light scattering results, reveal the existence of small self-assemblies and compact nanostructures ranging from spheres to single-/multi-layer vesicles in aqueous solutions. The studies reported herein show that these dumbbells can have different appearances, either as molecules or aggregates, in water or lipophilic phases; this offers a distinct model as drug carriers.

7.
ACS Macro Lett ; 3(11): 1151-1155, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35610814

RESUMO

One strategy to control the morphology of hybrid polymeric nanostructures is the proper selection of macromolecule architecture. We prepared metallacarborane-rich nanoparticles by interaction of double-hydrophilic block copolymers consisting of both poly(2-alkyl oxazolines) and poly(ethylene oxide) blocks with cobaltabisdicarbollide anion in physiological saline. The inner structure of the hybrid nanoparticles was studied by cryo-TEM, light scattering, SAXS, NMR, and ITC. Although the thermodynamics of diblock and star-like systems are almost identical, the macromolecular architecture has a great impact on the size and inner morphology of the nanoparticles. While hybrid nanoparticles formed by linear diblock copolymers are homogeneous, resembling gel-like nanospheres, the star-like shape of 4-arm block copolymers with PEO blocks in central parts of macromolecules leads to distinct compartmentalization. Because metallacarboranes are promising species in medicine, the studied nanoparticles are important for targeted drug delivery of boron cluster compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...